

NOVA course - 2025

Feed production, 24/6-2024. from Liv Torunn Mydland

Sergio Rocha 19.6.2025

NMBU: we have our own Centre for Feed Technology

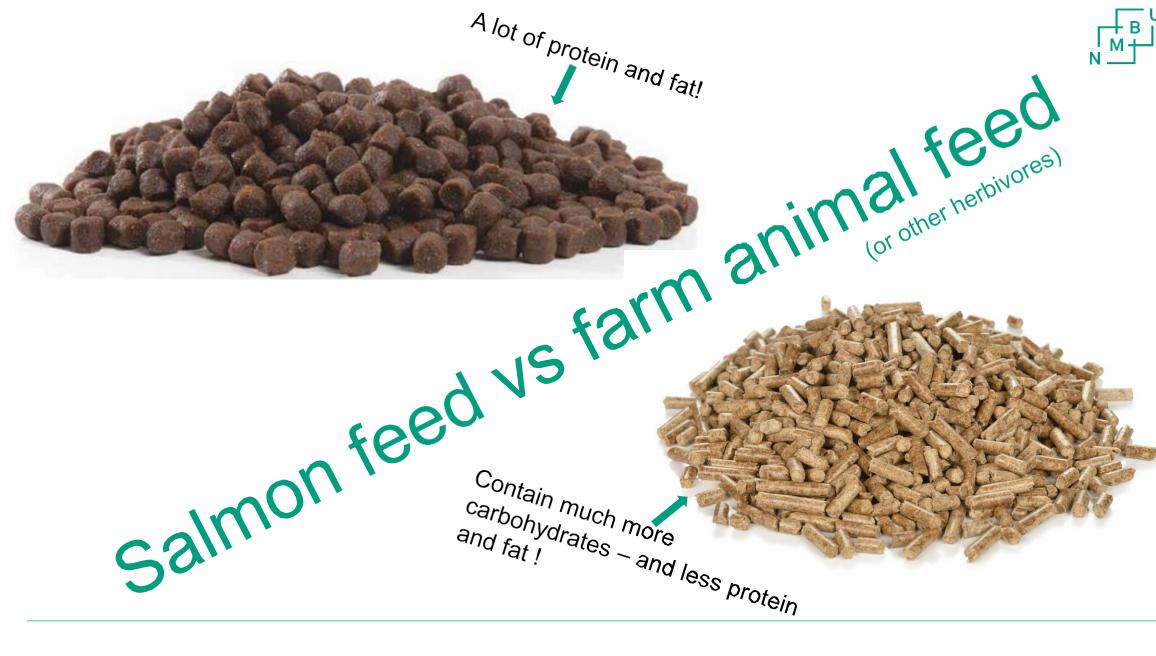
Photo: Ingvar S. Olsen Photo: Dejan Miladinovic

Optimal nutritional composition of a fish feed depends on e.g.:

M B U

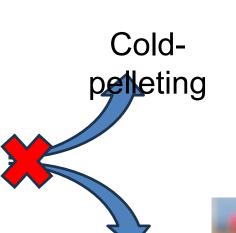
- Fish specie
- Production phase (Larvae? Fry? Smolt/Transfer? Grower?Broodstock?)
- Fish size
- The expected/«wanted» growth (FCR, TGC, SGR…)
- Season water temperature
- System (open/closed/semi-closed cages, RAS?)
- Health-related stressors, etc

Primary reasons for feed processing



- Alter physical form
- Alter particle size
- Prevent spoilage
- Improve palatability
- Inactivate toxins/antinutritional factors
- Ease of handling
- Increase digestibility

- Improve intake of nutrients
- Increase surface area of particles
- More surface area for chemical and enzymatic reactions
- Change molecular structure
- Denaturing, cooking starch, creating biological polymers



Cold-pelleting vs extrusion

NOVA course MIXING SHEET

Ingredient	%	% adjusted for water
FM	0,26	0,1872
SPC	0,245	0,1764
WGM	0,1	0,072
GPS	0,1167	0,084024
FO	0,19	0,1368
MCP	0,015	0,0108
PREMIX	0,005	0,0036
GELATIN	0,06	0,0432
L-Lysine	0,004	0,00288
DL-Methionine	0,0015	0,00108
Iron	0,0013	0,000936
Choline chloride	0,0015	0,00108
Water	0,28	0,28
		1,0000
0 mau	nt of food TOTAL VET	(ka)
		Half for paddle mixer
	=	842,40
		793,80
		324,00
·		378.11
	-	010,11
	•	48,60
·	· ·	16,20
-	-	10,20
	- · · · · · · · · · · · · · · · · · · ·	12,96
·	· ·	4,86
-	-	1,00
		4.86
		,,22
1		
ets)	6480	
	4860	2425,788
	CHECK	2430
	FM SPC WGM GPS FO MCP PREMIX GELATIN L-Lysine DL-Methionine Iron Choline chloride Water Amount kg 0,1872 0,1764 0,072 0,084024 0,1368 0,00108 0,0036 0,00432 0,00288 0,00108 0,000936 0,00108 0,00108 0,00108 0,00108 0,00108 0,00108 0,00108 0,00108 0,00108 0,00108 0,00108 0,028	FM 0,26 SPC 0,245 WGM 0,1 GPS 0,1167 FO 0,19 MCP 0,015 PREMIX 0,005 GELATIN 0,06 L-Lysine 0,004 DL-Methionine 0,0015 Iron 0,0013 Choline chloride 0,0015 Water 0,28 Amount of feed TOTAL WET 9 0,1872 1684,8 0,1764 1587,6 0,072 648 0,084024 756,216 0,1368 1231,2 0,0108 97,200 0,0036 32,400 0,0432 388,8 0,00288 25,920 0,00108 9,720 0,000936 8,424 0,00108 9,720 0,000936 8,424 0,00108 9,720 0,000936 8,424 0,00108 9,720 0,000936 8,424 0,00108 9,720 0,000936 8,424 0,00108 9,720 0,000936 8,424 0,00108 9,720 0,0036 32500 0,00108 9,720 0,000936 8,424 0,00108 9,720 0,000936 8,424 0,00108 9,720 0,000936 8,424 0,00108 9,720 0,28 2520 1 9000 ets) 6480 ets) 6480

Extrusion

COLD-PELLETING

P35A

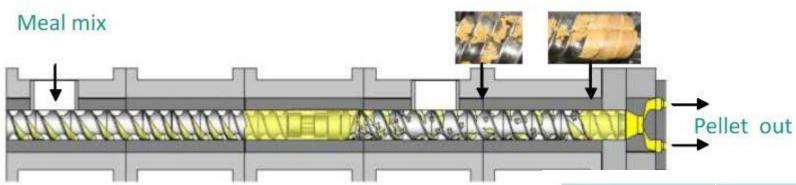
Pasta machine (Pasta extruder)

10

EXTRUSION

Mini-Extruder at MNBU

ThermoFisher
Process 16
Parallel Twin-Screw Extruders


Norwegian University of Life Sciences

25 - 35% moist (H₂O)

Temp: 110 – 130 °C

Pressure: 5 - 25 bar (or much more)

EXTRUSION:

- Take only ca 30 seconds
- 25 35% moist (H2O)
- T: 110 130 °C
- Pressure: 5 25 bar

Extruders are also used for cheese doodles, corn flakes etc)

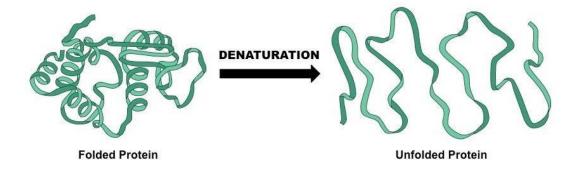
Pellet properties	Raw material properties	Molecul e/	Raw material, example	Process- properties
No not crack	Elastic-	Gluten	Wheat	110 – 130 °C
Do not create dust/loose small particles	High binding («glue»)	Gluten (G), starch (S)	G : Wheat. S : grain; rice, tapioca, corn	110 – 130 °C
Ensure space for oil	Expansion	Starch	Grain, rice, tapioca, corn	Pressure difference out of extruder (ΔP > ~5 bar)
Do not leak oil	Ensure small pores (not a few large ones)	Starch	Grain, rice, tapioca, corn	Not too high pressure difference out of extruder (ΔP < ~30 bar)
Each pellet should have same size & properties	Narrow particle size distrubution			Thorough milling

MORE than enough expansion!

2mm

Moist and expansion

Cold-pelleting vs extrusion


PROS		CONS	
Cold-pelleting	 Ideal for small/pilot trials Requires less material & less waste Optimal to sensitive ingredients Less technical 	Requires pre-gelatinized starchLess water stabilityNot used by fish industryMore chances to spoil	
Extrusion	- More water stability- Increase digestibility- Industry-like- Longer shelf-life	 Requires larger amounts of ingredients Temperature- and pressure-sensitive ingredients are added in additional steps More technical 	

Advantages of extrusion – compared to pelleting

- increased temperature (90°C to 160°C)
- increased fat addition (30% or more)
- gelatinization of starch (70% to 95%)
- pasteurized/sterilized feed (90°C to 160°C)
- improved denaturation of protein
- increased production capacity (up to 50%)
- improved pellet durability (up to 20%)
- lower dust formation
- a more flexible process

How to make good pellets? (in theory...)

What is a good pellets for aquaculture

- 1. Control of floating/sinking properties
- 2. Pellet durability for handling/transportation
- 3. Attractive pellet appearance (shape and size)
- 4. Proper fat absorption characteristics
- 5. Rapid water absorption while maintaining integrity
- 6. Fish nutrition & health



Sinking speed is species-specific

Neutral **Floating** Slow sinking **Fast** sinking pellets Bouyance pellets YELLOW TAIL SHRIMP SALMON TILAPIA EEL CATFISH FLOUNDER FLATFISH MILKFISH SEA BREAM COD SEA BASS HALIBUT TROUT MOI MAIMAI TURBOT

Sinking speed and Bulk Density

Product Bulk Density Correlation with Buoyance

Pellet Characteristic	In sea water @ 20℃ (3% salinity)	In fresh water @ 20℃
Fast sinking	> 640 g/l	> 600 g/l
Slow sinking	580-600 g/l	540-560 g/l
Neutral buoyancy	520-540 g/l	480-520 g/l
Floating	< 480 g/l	< 440 g/l

How to control sinking velocity?

Ingredients + Extrusion (physics) = Bulk density

Wheat Flower Wheat Gluten Meal

Starch assists expansion, binding, viscosity, pellet durability and oil retention [11-15%]

Gluten promotes elasticity and binding [7-9%]

Input mix (kg/h)
Input water (L/h)
Temperature (in diff. sections)
Screw configuration rotation (Rpm)

Pressure: affected by viscosity and all the parameters above.

After expansion, pellets should have a low density (floaitng).

Once coated, density will increase and they should sink slowly.

NB! But we only know AFTER finishing all the process! = tests!

How to control sinking velocity?

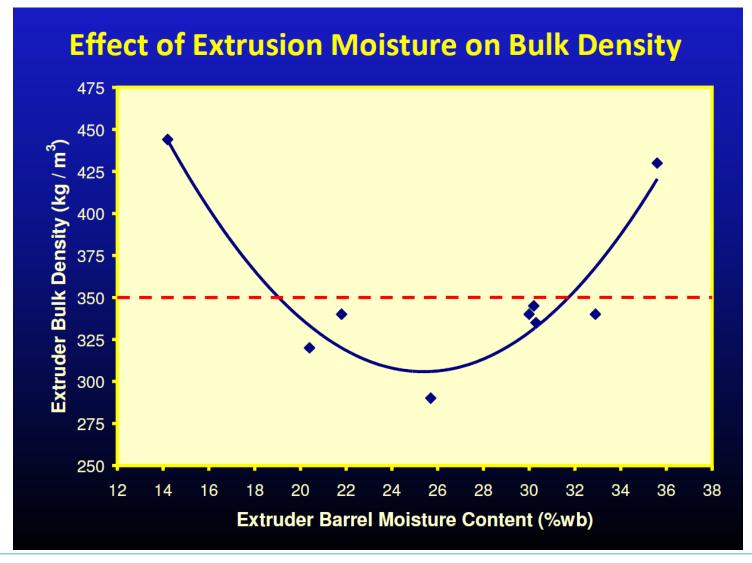
Extruded Floating and Sinking Diets Containing High Levels of Vegetable Protein

Made from base recipe containing 70% soybean meal, 20% wheat flour, and 10% fish meal.

After coating, these products contained 22% fat and 35.5% protein

750 g/l product density

Die and pressure



A diet composition and physical conditions that work well with a specific die will not work to a die with a different diameter!

How to control sinking velocity?

26

Drying and vacuum coating

Diet	Final Moist %	Weight before coating	Oils to add	Final weight pellets (kg)
1	9,65 % (35min)	5,82 kg	1,278 L	6,98
2	8,54 % (40min)	5,70 kg	1,251 L	6,92
3	8,80 % (45min)	5,64 kg	1,238 L	6,86

At industrial scale

Manufacturing Process

Fine Grinding

Sifting

Mixing

Drying

Extrusion

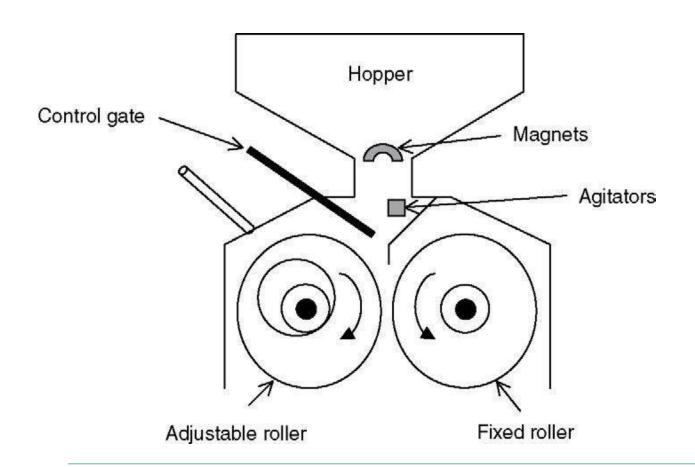
Vibrating Sifter

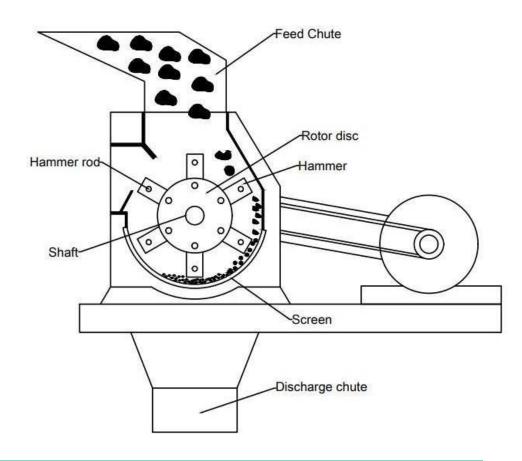
Vacuum Coating

Cooling

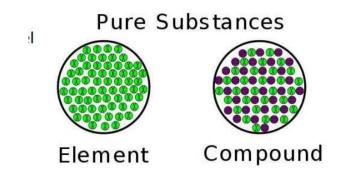
Vibrating Sifter

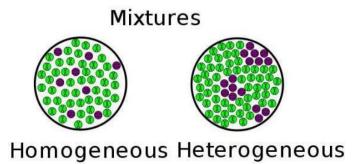
er




Grinding

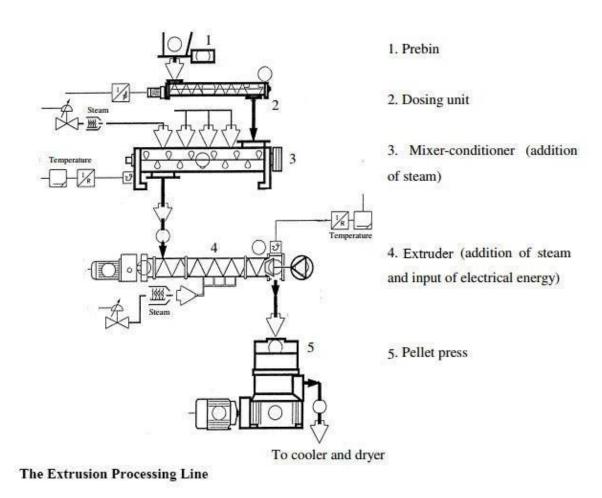
Roller mill

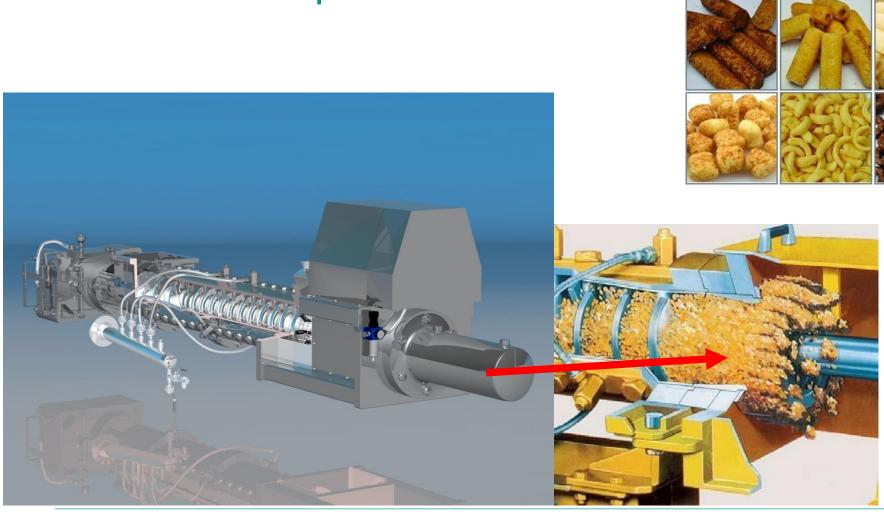

Hammer mill



Weighing/dosing - mixing

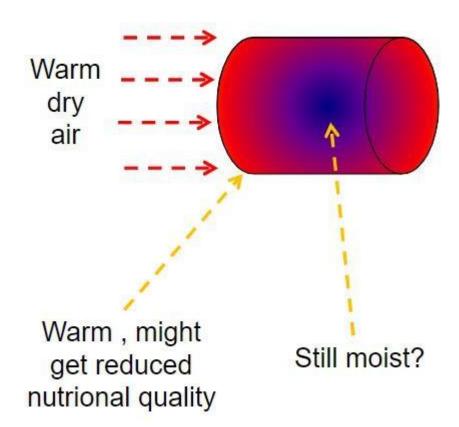
- The objective of the mixing process is to produce feed in which all nutrients are uniformly distributed.
- Type of material?
 - Powder vs Liquids
- Factors that determine mixer performance:
 - Physical properties (particle size and shape, density, electric charge)
 - Sequence of ingredient addition
 - Build up of material / overfilling or underfilling
 - Mixing time

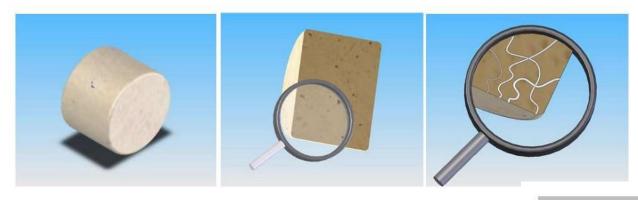



Steam is important!

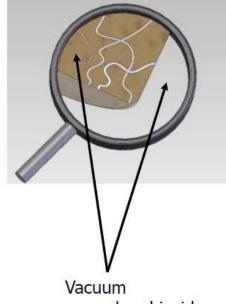
M H

- High energy in a small volume
- Easy to transport (pumps are normally not necessary)
- Cheap and usable
- Intrinsically safe medium
- Temperature is related to the pressure
- Gives the heat to everything with lower temperature immediately
- Condense back to water immediately after the heat has been "handed ove" to the other ingredients in the mix

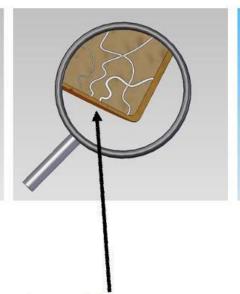

Extrusion - expansion

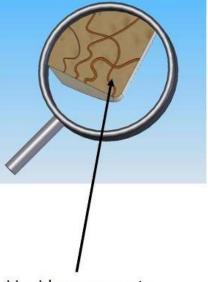


Drying



Vacuum coating




Extruded pellet - no oil added

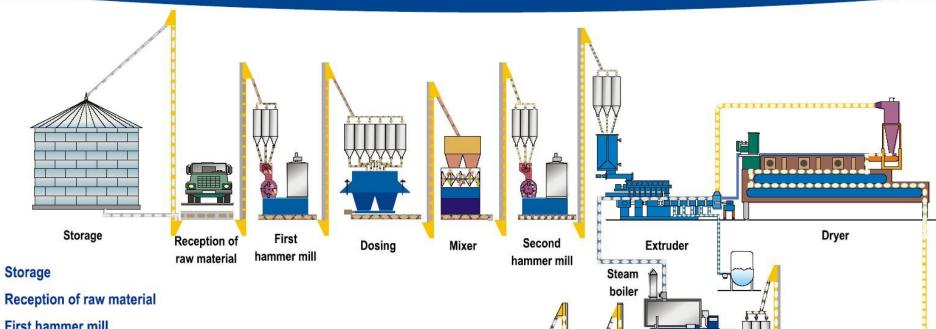
Vacuum around and inside of the pellet

Layer of fat or any other liquid (vitamin color, aroma...) blinded by capillary forces

Liquid component in the pellet cavities sealed by atmospheric pressure

Vacuum infusion (fill the pellet with oil)

No oil added


10-15% oil

More than 30% oil

Source: Olav Fjeld Kraugerud

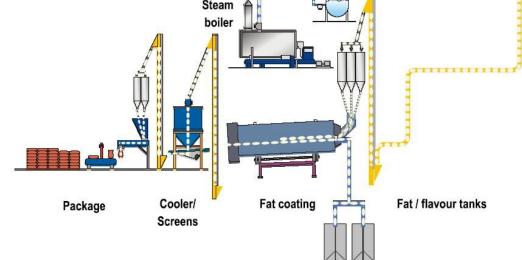
Extruded Feed Production Flow

First hammer mill

Dosing

Mixer

Second hammer mill


Extruder

Dryer

Fat coating

Cooler/Screens

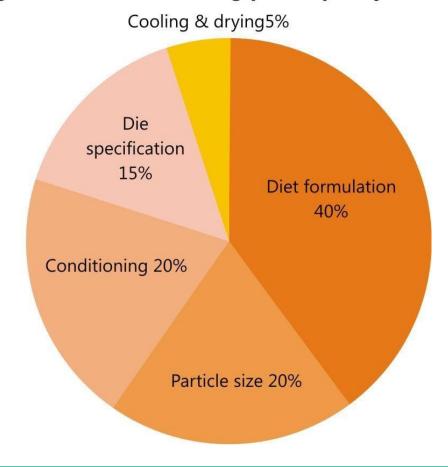
Package

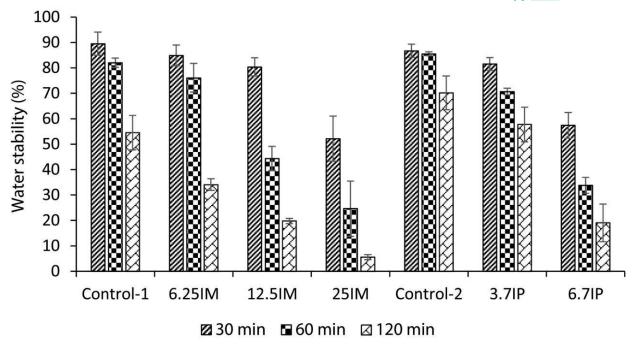
Salmon pellets must:

M B U

- A salmon pellet must contain correct amount of ALL nutrients, including all additives (e.g., astaxantin), and many of the antinutrients should be destroyed (or limited).
- Other important qualities when being pumped into the cages:
 - -Must be stable in water
 - Correct sinking velocity
 - Must be hard (must not break into dust/loose smaller pieces) – but must not be too hard (digestibility can be affected...)
 - -Must not leak fat!

(more about pellet quality tomorrow ©)





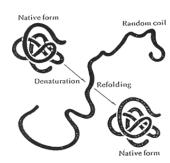
Pellet quality

THE TOTAL PROPERTY OF THE PROP

Figure 1: Factors affecting pellet quality

- Water stability (dry matter retention %) of pellets with increased inclusion of black soldier fly larvae (BSFL) meal and paste after 30, 60 and 120 min.
- IM= insect meal / IP = insect paste
- (Weththasinghe et al. 2021)

Reactions during feed processing (and storage)

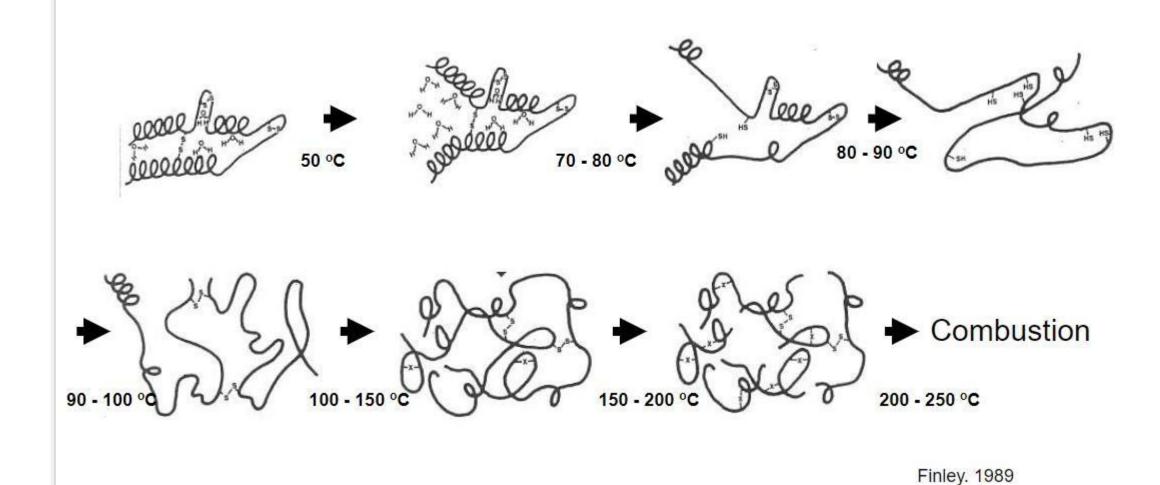

• The effects of heat treatment on protein in feeds depend on many factors:

* moisture level

* soluble CHO

* maximum temperature

* time x temperature effects

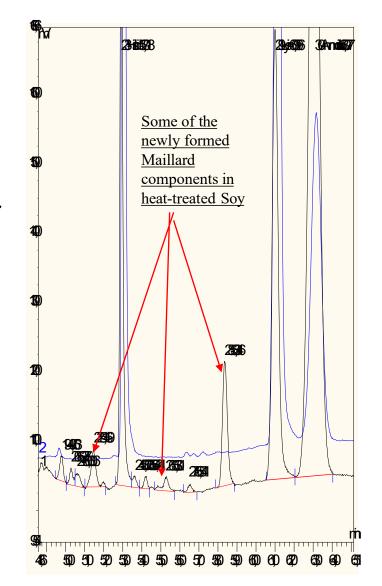


- Heat-induced denaturation of proteins can make the protein susceptible to e.g.:
- Hydrolysis of peptide bonds
- * Deamidation / imide formation
- Racemization / isomerization
- * Disulfide scission/reduction/formation

Oxidation

- * Non-covalent changes (denaturation, misfolding, adsorption, aggregation or precipitation)
- Chemical reactions: Maillard reactions

Changes in proteins by heating



Maillard – nonenzymatic browning

- MR: a chemical reaction between an amino acid and a reducing sugar (e.g., glucose, lactose, arabinose, maltose, xylose).

 E.g., caramellization, the brown crust on your bread, the dark colour in beer....
- Amino acid analyses Some of these browning products are favourable: they give both colour and flavour to the food & feed. However: several MRPs are toxic, neurotoxic, genome-affecting, and carcinogenic compounds (e.g., acrylamide).
- We can usually detect small reductions in specific AAs (e.g., Cys, Lys, Ser, Arg, Thr)

Also; racemization (heat-induced reaction in feed – converts L-AAs into D-AAs).

"Available Amino Acids"

- When formulating diets we assume that all the analyzed AA's in our feed ingredients are available for digestion.
- Heat damaged AA's are often difficult to detect as the AA-analysis methods include both oxidation step (Cys / Met) and acid hydrolysis step.
- A nutrient is only bioavailable if it can be used for normal metabolic functions in the animal.
- Overheating of protein will not affect the amount of protein in the feed but will damage its nutritional quality thus we then need to analyze the "bioavailability" of the AA's.
- Lost protein value = lost profit
 (we do not often see very heat damaged protein in salmon diets)

Storage of feed – affects the AA availability

Different meals and pelleted diets were stored for 1 week at 28°C (warm) or 4 °C (cold). Storage of the diets for 1 weekk at approx. 28°C resulted in reduced lysine bioavailability:

Chick bioassay:

Dietary treatment ^b	Weight gain, g	Feed intake, g	Gain:feed, g/kg
1. Basal diet (lysine deficient)	155 ^t	350 ^x	445 ^u
2. As 1 + .08% Lys from L·Lys HCl	207 ^u	429 ^y	485°
3. As 1 + .16% Lys from L·Lys HCl	255°	468 ^{yz}	545 ^w
4. As 1 + .70% Lys from L·Lys HCl	314 ^w	493 ^z	637×
 As 4 + .14% Lys from meal/cool diet° 	338 ^x	503°	673 ^y
6. As 1 + .14% Lys from meal/cool diet°	236 ^{yz}	430 ^y	552w
7. As 1 + .14% Lys from meal/warm diet ^c	229 ^y	430 ^y	532wz
8. As 1 + .14% Lys from pellet/cool diet ^c	253 ^{vz}	474 ^{yz}	534wz
 As 1 + .14% Lys from pellet/warm diet° 	238 ^{vyz}	466 ^{yz}	510 ^{vz}

	Analyzed lysine, %		Supplemental lysine intake, mg/chick		Relative	
Dietary treatment ^c	Before treatment	After treatment	Total ^d	Bioavailable	bioavailability, % ^f	
6. Basal + .14% Lys from meal/cool diet	1.40	1.40	601	585	97	
7. Basal + .14% Lys from meal/warm diet	1.40	1.33	602	534	88	
8. Basal + .14% Lys from pellet/cool diet	1.40	1.41	663	711	107	
9. Basal + .14% Lys from pellet/warm diet	1.40	1.38	653	602	92	

Racemization

Table 2 D-Asp content (D/D + L%) in different commercial fish meals (mean of duplicate analyses) (Luzzana et al. 1996a)

	SFM*	LC†	LD1‡	LD2‡	HP§	HC1¶	HC2¶	HC3¶	HD1**	HD2**	HD3**	HD4**
оAsp	0.7ª	0.5ª	0.6ª	0.6ª	3.0 ^b	2.8 ^b	2.0 ^b	4.9 ^b	4.4 b	5.8 ^b	3.7 ^b	3.5 ^b

Values in the same row not sharing the same superscript letters differ significantly (P < 0.05). Reprinted with permission. Published 1996 by Blackwell Science Ltd.

*SFM, standard fish meal from Sigma Chemical Co. (St. Louis, MO, USA).

†LC, lowtemperature fish meal from Chile.

‡LD 1-2, low-temperature fish meals from Denmark.

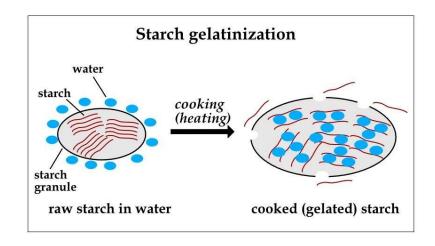
§HP, high-temperature fish meal from Peru.

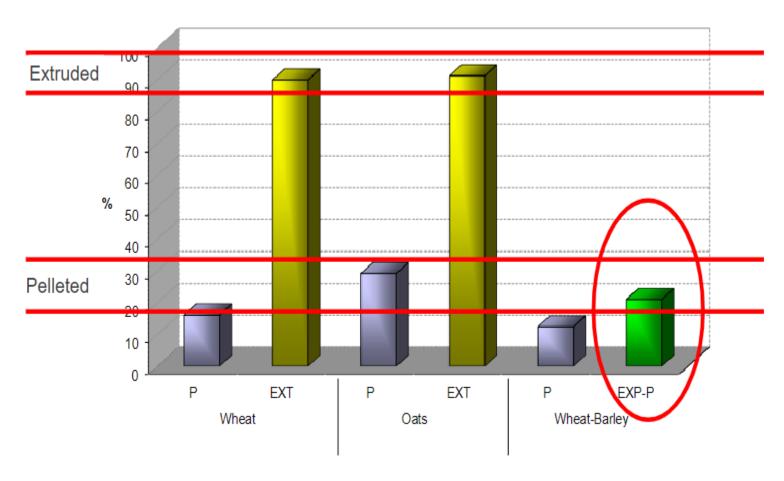
¶HC 1-3, high-temperature fish meal from Chile.

**HD 1-4, high-temperature fish meal from Denmark.

Racemization pathways

1. Free amino acid racemization


Universal mechanism; both in free and peptide-bound amino acids Widely used in kinetic studies


Table 1 Rate of racemization of aspartic acid (K_{Asp}) in whole herring (Clupea harengus L.) treated under different conditions (Luzzana et al. 1999). Reprinted with permission. Published 1999 by the American Chemical Society

0	7.0	
	7.0	0.46
0	7.0	3.39
5	7.0	0.06
0	7.0	0.43
0	4.0	0.37
(5	7.0 7.0

Gelatinization

P: Pelleted; EXT: Extruded; EXP-P: Expanded & pelleted (Zimonja, 2008)

Pellet properties	Raw material properties	Molecul e/	Raw material, example	Process- properties
No not crack	Elastic-	Gluten	Wheat	110 – 130 °C
Do not create dust/loose small particles	High binding («glue»)	Gluten (G), starch (S)	G : Wheat. S : grain; rice, tapioca, corn	110 – 130 °C
Ensure space for oil	Expansion	Starch	Grain, rice, tapioca, corn	Pressure difference out of extruder (△P > ~5 bar)
Do not leak oil	Ensure small pores (not a few large ones)	Starch	Grain, rice, tapioca, corn	Not too high pressure difference out of extruder (ΔP < ~30 bar)
Each pellet should have same size & properties	Narrow particle size			Thorough milling

Example from the Bühler Group:
Aquafeed processing at Marine Harvest, Norway
https://www.youtube.com/watch?v=xpVEvPVtO0Y

The most relevant plant antinutrients

Gossypol

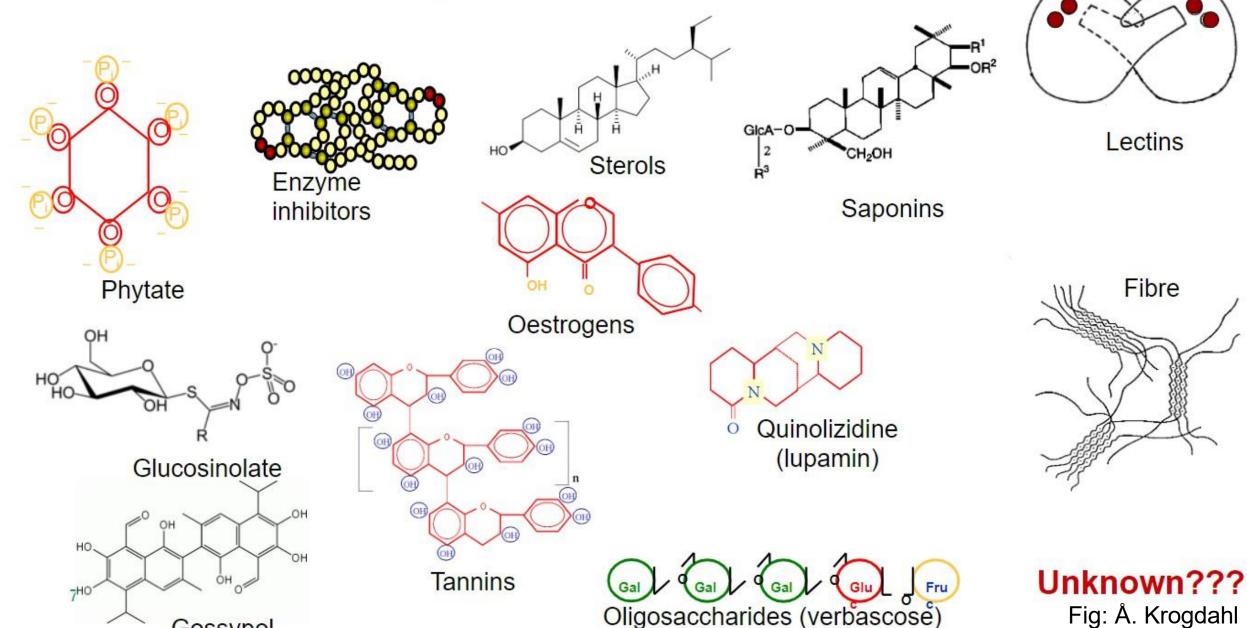


Fig: Å. Krogdahl

ANF's – possible treatment methods

Antinutrient	Sources	Type of treatment
Proteinase inhibitors	Legumes	Heat, enzyme
Amylase inhibitors	Peas	Heat, enzyme
Lipase inhibitor	Beans	Heat, enzyme
Lectins	All plants seeds	Heat, enzyme,
Phytic acid	All plants	Enzyme
Fibre	All plants	Enzyme, dehulling
Tannins	Rape seed, beans	Dehulling
Saponins	Legumes	Alcohol extraction,
Sterols	Legumes	Alcohol/non-polar extraction,
Oestrogens	Beans	Alcohol/non-polar extraction
Gossypol	Cotton seed	Non-polar extraction,
Oligosaccharides	Legumes	Aqueous extraction
Quinolozidine alkaloids	Lupins	Aqueous extraction
Goitrogens	Rape seed	

Other methods: fermentation, selective breeding, gene modification

Making a diet...various constraints:

NUTRIENT REQUIREMENTS MUST BE MET

 min / max values of energy /DE, protein /DP, DP/DE ratio, amino acids, fatty acids, vitamins, minerals etc.

LIMITS ON THE USE OF RAW MATERIALS

- -Min use of specific raw materials ('force in') e.g.:
 - Fish meal at particular level etc., fixed levels of vitamins-minerals premixes etc.
 - Availability for production
- -Max use of RM (limitation) e.g. due to:
 - Antinutritional factors, other characteristics or effects (e.g. dietary corn levels can affect fish pigmentation), availability for production

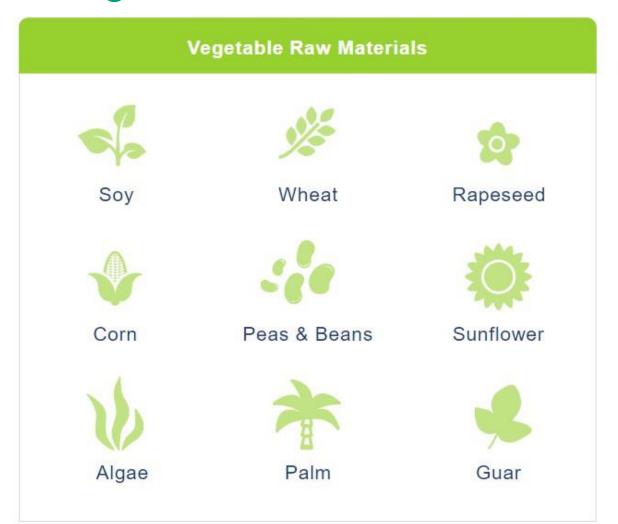
Making a diet...various constraints – cont.:

FEED PHYSICAL PROPERTIES

- RM and nutrients can affect the physical properties of the pellet (e.g., starch level can affect pellet structure and hence absorption and/or retention of oil, floating characteristics etc.)
- Different specifications may be needed depending on the technology of production (pelleting, extrusion → single or twin screw etc.)

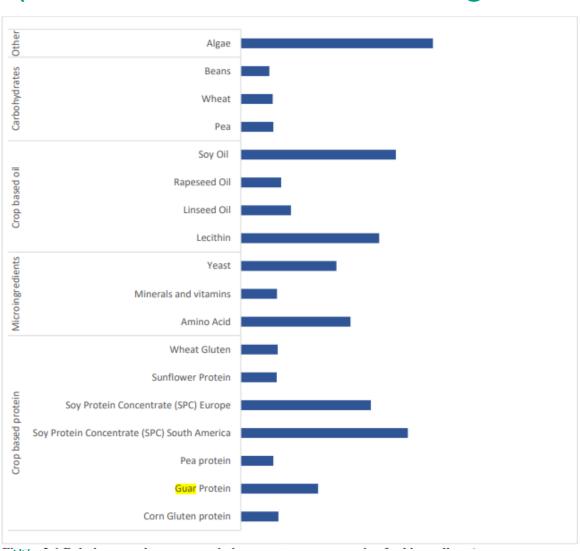
PRODUCTION / MANUFACTURING / TECHNICAL (e.g., max oil that the factory can handle)

LEGISLATION

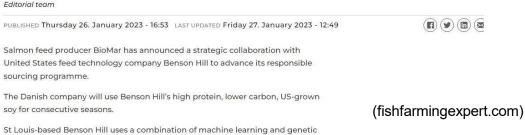

(e.g., max level of vitamin D, Se, Zn etc & use of specific raw materials such as LAP)

 SPECIAL PRODUCT SPECIFICATIONS (use or exclusion of specific RM, pigments, EPA+DHA levels etc can be adjusted according to market/customer requirements)

Raw material categories


Marine Raw Materials Marine Proteins Marine Oils Krill Meal

Relative GHG emissions per tonne feed ingredient (tonnes CO2/tonne feed ingredient at feed mill entry)



BioMar will use soy varieties developed by St Louis-based Benson Hill. Sourcing protein from the plants should lower the environmenta impact of BioMar's feeds. Photo: BioMar

BioMar to use high-tech soy to reduce footprint of feed

Growing protein-rich varieties requires less water and generates less CO2e than production of soy protein concentrate

St Louis-based Benson Hill uses a combination of machine learning and genetic selection to produce a range of soy varieties with different characteristics. It also uses gene editing for research and development, but not for commercial products. It has a segregated value chain for its non-GMO soy which has ProTerra Certification.

Certifications

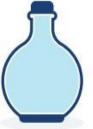
Fish oil

ASC Compliant

Soy

Certified

- U.S. SSAP



Fishmeal

79%

ASC Compliant

- FishSource™

Palm oil

Certified

- Green Palm or equivalent

Krill meal

Certified

MSC

Examples of certification of sustainability:

- MSC (Marine Stewardship Councils)
- MarinTrust (Global Standard for Responsible Supply (IFFO RS)
- Aquaculture Stewardship Council (ASC)
- Sustainable Fisheries Partnership (SFP)
- The North Atlantic Pelagic Advocacy Group (NAPA)
- Global Salmon Initiative (GSI)
- SeaBOS (Seafood Business for Ocean Stewardship)
- Global Aquaculture Alliance (GAA)
- GLOBALG.A.P.
- The ProTerra Foundation
- The Round Table on Responsible Soy (RTRS)
- New York Declaration on Forests
- Cerrado Manifesto Statement of Support Group
- UN Global Compact

Fig: Biomar

EFSA - European Food Safety Authority

EFSA Journal 2011;9(5):2137

SCIENTIFIC OPINION

Scientific Opinion on the safety of 'yeast beta-glucans' as a Novel Food ingredient¹

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)², ³

EFSA Journal

SCIENTIFIC OPINION

ADOPTED: 13 November 2019 doi: 10.2903/j.efsa.2019.5920

Safety and efficacy of astaxanthin-dimethyldisuccinate (Carophyll® Stay-Pink 10%-CWS) for salmonids, crustaceans and other fish

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP),

SCIENTIFIC OPINION

ADOPTED: 21 October 2015 doi:10.2903/j.efsa.2015.4272 PUBLISHED: 20 November 2015

Safety and efficacy of ethoxyquin (6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline) for all animal species

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

SCIENTIFIC OPINION

ADOPTED: 21 March 2017 doi: 10.2903/j.efsa.2017.4763

Safety and efficacy of OPTIPHOS® (6-phytase) as a feed additive for finfish

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP),

Certifications – fish farms

Every certification is a promise

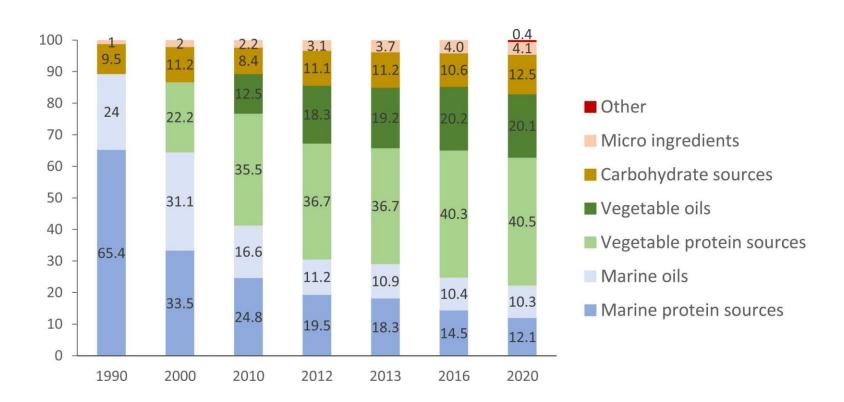
We back up our commitment to sustainability, quality and safety by making ourselves openly accountable to the most stringent third-party standards in the industry. With these certifications as an independent, unbiased guide, our customers can be confident that Cermag products are safe and sustainable, from a socially responsible company.

https://www.cermaq.no/v%C3%A5r-produksjon/certifications

Links to our certificates:

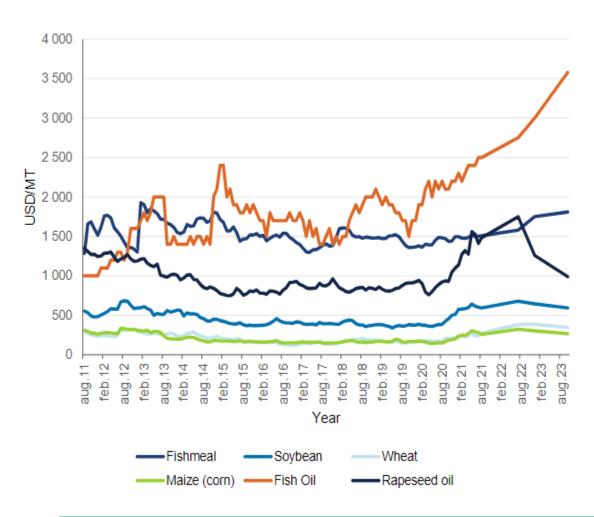
- ISO 9001 certificate
- ISO 22000 certificate
- ASC Chain of Custody Certificate Steigen processing plant (N-2284)
- ASC Chain of Custody Certificate Rypefjord processing plant (F-430)
- 2023 HACCP statement F430
- 2023 HACCP statement N2284
- Global GAP certificate

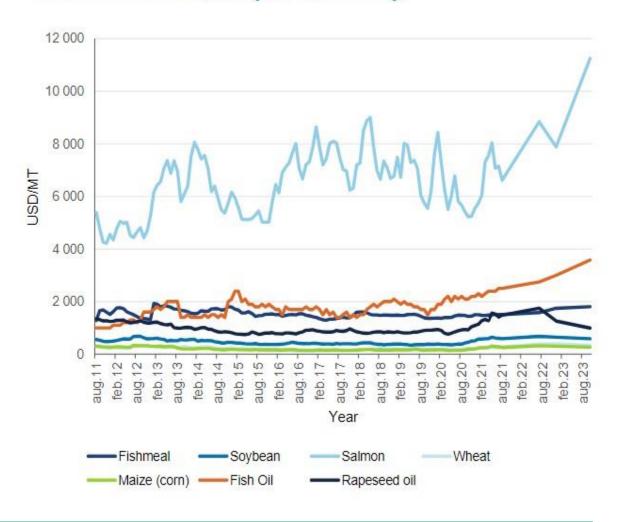
Monitoring program for both fish feed & fish in Norway


- In 2021, a total of 14135 fish were sampled analyses of e.g., illegal substances, pharmaceuticals and contaminants:
 - No environmental contaminants were found above the EU maximum level (ML).
 - Residues of anti-sealice agents (cypermethrin, emamectin and lufenuron) were found, but all concentrations below the respective MRLs (Maximum Residue Limits).
 - Other veterinary drugs, like antibiotics or drugs used against internal parasites were not found.
 - Residues of crystal violet (forbidden to use) in 2 samples (but further investigation concluded with the cause likely being a contamination of the samples during sample taking). No other residues of illegal compounds were found.

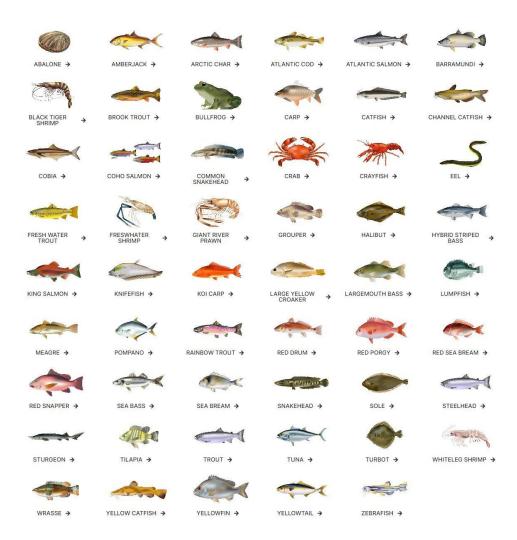
https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2022-22 https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-en-2022-26

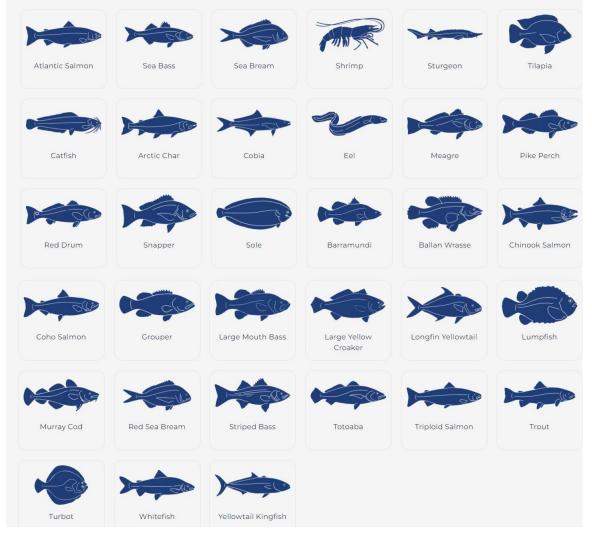
Average cost per kg fish produced (2022-values).


Average price per kg sold fish (2022-values)


Kroner,

Raw material cost (USD/MT)




Salmon cost (USD/MT)

Examples of diets for different species can be found here:

https://www.skretting.com/en/species/

https://www.biomar.com/feed-and-services

Questions?

- <u>liv.mydland@nmbu.no</u>
- sergio.rocha@nmbu.no

